KANAT YUNUSLAMASI VE DEĞİŞKEN KANATÇIK AÇILARI SIRASINDA OLUŞAN BÜYÜK GİRDAP OLUŞUMLARININ SİMÜLASYONU

  • H. Arsev Eraslan
  • Ali Ergin
Keywords: Computational Fluid Dynamics, Computational Fluid Physics, Pitching of an Airfoil, Discretal Theory, Aero-FLOWER

Abstract

In this work, a novel and national digital flow modelling capability has been developed as a further developing
cluster for FLOWER Digital Modelling. With the developed model, in order to determine fast-variying flight
stability borders and developing flight control softwares, related to flight dynamics and aero-dymanics,
eddification of the daraught on an air vehicle during fast-varying wing and tail position changes has been
estimated on designing body and wing of high manoeuvre-capable fixed-wing air vehicles.

References

[1] Eraslan, A. H., Erhan, İ. H., Lin, W. L. 1981. A
Fast Transient, Two-Dimensional, Discrte element
Rainfall-Runoff Model, For Channelized, composite
Subsurface-Surface Flows In Valleys Steep Terrain,
Procedings of the International Symposium on
Rainfall-Runoff Modeling held, Mississippi State
University, Mississippi State, Mississippi, USA.
[2] Eraslan, A. H., Ahmadi, G. 1993. A Computer
Code For Analyzing Transient Three-Dimensional
Rapid Granular Flows In Complex Geometries.
Computer Fluids, Vol. 22, No. 1, pp.25-50, USA.
[3] Eraslan, A. H. 1995. Computationly
Challanging Problems in Fast-Transient Multiphase
Convective Heat Transfer. American Society of
Mechanical Engineering, Energy&Enviromental Expo
95, Texas.
[4] Tang, J., Vieru, D., Shyy, W. 2007. A Study of
Aerodynamics of Low Reynolds Number Flexible
Airfoils, 37th AIAA Fluid Dynamics Conference and
Exhibit, Miami.
[5] Eraslan, A. H., Lin, W. L., ve Sharp, R. D.
1983. FLOWER: A Computer Code For Simulating
Three-Dimensional Flow, Temperature And Salinity
Conditions in Rivers, Estuaries and Coastal Regions.
Rapor No: NUREG/CR-3172, U.S. Nuclear
Regulatory Commission, Office of Nuclear
Regulatory Research, Washington, D. C., ve Rapor
No.: ORNL/TM-8401, Oak Ridge National
Laboratory, Oak Ridge, Tennessee.
[6] Eraslan, H. A. 2006. Turbulence: Proper
Reynolds Transport Theorem Versus Formal Reynolds
Decomposition Hypothesis. J. Fluid Mech. (under
consideration for publication).
[7] Eraslan, H. A. 2006. Discretal Theory of Fluid
Flow Physics: Toward a Universal Computational
Algorithm. Journal of Computational Physics (under
consideration for publication).
[8] Johnson, A. A., Tezduyar, T. E. 1994. Mesh
Update Strategies in Parallel Finite Element
Computations of Flow Problems with Moving
Boundaries and Interfaces. Comput. Methods Appt.
Mech. Engrg. 119, 73-94.
[9] Özdemir, M. A., Onbaşıoğlu, S. 2004. F-4
Phantom II Uçağının Etrafındaki Akışın HAD Analizi
Kısım 1: Kanat Kök Profili NACA 0006. Havacılık ve
Uzay Teknolojileri Dergisi Cilt1 Sayı 4 (1-6), Türkiye.
[10] Camelli, F., Löhner, R. 2002. Combining the
Baldwin Lomax and Smagorinsky Turbulence Models
to Calculate Flows with Separation Regions, 40thAIAA Aerospace Sciences Meeting & Exhibit, Reno,
Nevada.
Published
2009-01-26
How to Cite
[1]
H. Eraslan and A. Ergin, “KANAT YUNUSLAMASI VE DEĞİŞKEN KANATÇIK AÇILARI SIRASINDA OLUŞAN BÜYÜK GİRDAP OLUŞUMLARININ SİMÜLASYONU”, JAST, vol. 4, no. 1, pp. 61-75, Jan. 2009.
Section
Articles