AN INVESTIGATION OF MICROSTRUCTURAL AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED AL 6013-T6 ALLOY USED ON AERONAUTICS AND AEROSPACE STRUCTURES

  • Haşim Kafalı
  • Nuran Ay
Keywords: Friction Stir Welding, Aircraft Structure, Tensile and Fatigue Tests, Microstructural Evaluation, Aircraft Maintenance and Repair

Abstract

Aluminum alloys are widely used in aircraft structures especially in the fuselage and wing fairings. For the joining of these structures, the traditional technique of riveting is used. However, riveting increases the structural weight of the aircraft and rivet holes cause stress concentration for the fatigue cracks. In traditional welding techniques, metal is heated up to the melting point for this reason the mechanical behavior of the material deteriorates. In addition to that the weldability of high strength materials is low. In recent years Friction Stir Welding (FSW) has been used as an alternative joining technique. In this study; the weldability by FSW of 6013-T6, an aluminum alloy having an important place in aviation and space industries; the mechanical properties of the material after welding; and the changes in the internal structure have been examined. Along the course of this study, the raw material and the welded material have been tested by microhardness test, tensile test, and fatigue test. The microstructure has been examined by the optical microscope and the electron microscope. The particles within metals and the grain structure in the welded material have been analyzed by optical microscope and scanning electron microscope.

References

[1] Messler, R.W., (1993) "Joining of advanced materials", Reed Publishing Inc., USA.
[2] Lancaster, J.F., (1987) "Metallurgy of welding", 4th Ed., Allen and Unwin, UK.
[3] Brandon, D. ve Kaplan W.D., (1997) "Joining processes: an introduction", John Willey and Sons, UK.
[4] Hayes C., (1997) "The ABC’s of nondestructive weld examination", Welding Journal May 1997, The American Welding Society, USA.
[5] Anık, S., Anık, E.S. ve Vural, M., (1993) "1OOO soruda kaynak teknolojisi el kitabı cilt I", Birsen Yayınevi, İstanbul.
[6] Kafalı, H., (2011) "Sürtünme Karıştırma Kaynağıyla Birleştirilmiş Al 6013 Alaşımının mikroyapı ve mekanik özelliklerinin İncelenmesi", Doktora Tezi, Anadolu Üniversitesi, Fen Bilimleri Enstitü, Eskişehir.
[7] Kınıkoğlu, N.G., (2001) "Malzeme Bilimi ve Mühendisliği", Ekim 2001, İstanbul.
[8] Taban, E. ve Kaluç, E., (2005) “Alüminyum ve Alüminyum Alaşımlarının Standart Gösterimleri,” MakineTek. P.178, İstanbul.
[9] Özarpa, C., (2005) "Al 5754-H22 Alüminyum Alaşımlarının Sürtünme Karıştırma Kaynağı", Doktora Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya.
[10] Yurdakul, M., Özbay, O. ve İç, Y.T., (2002) “Havacılık alanında kullanılan alüminyum alaşımlarının seçimi,” Gazi Üniv. Müh. Mim. Fak. Der., 17, No: 2, 1-23.
[11] http://www.mat.ethz.ch/news_events/archive/materialsday/matday01/pdf/TempusMD.pdf, Ocak 2008.
[12] Lloyd, D.J., (1998) “Aluminium alloys used in automotive skin sheet”,Advances in Industrial Materials, The Metallurgical Soc. of CIM.
[13] Thomas W.M., Nicholas E.D., Needham J.C., Murch M.G., Templesmith P. ve Dawes C.J. (TWI), (1992) "Improvements relating to friction stir welding", European Patent Specification EP0615480B1.
[14] Threadgill P., (1997) "Friction stir welds in Aluminium alloy – preliminary microstructure assessment", TWI Bulletin, TWI, Abington, UK.
[15] Dr.Ing. Staniek G., Dr.Ing. Hillger W. ve Dr.Ing. Dalle Donne C., (2003) “Ultrasonic testing on friction stir welded aluminium alloys, Testing on friction stir welds”.
[16] Christner, B., McCoury, J. ve Higgins, SÇ, (2003) “Development and testing of friction stir welding (FSW) as a joining method for primary aircraft structure,” 4th International Symposium on Friction Stir Welding, Park City, Utah, USA, 14-16 May 2003.
[17] Christner, B., Hansen, M., Skinner, M. ve Sylva, G., (2003) “Friction stir welding system development fort hin-gauge aerospace structures,” 4th International Symposium on Friction Stir Welding, Park City, Utah, USA, 14-16 May 2003.
[18] Shepherd, G.E., (2003) “The evaluation of friction stir welded joints on Airbus aircraft wing structure,” 4th International Symposium on Friction Stir Welding, Park City, Utah, USA, 14-16 May 2003.
[19] Lohwasser, D., (2003) “Friction stir welding of aerospace alloys,” 4th International Symposium on Friction Stir Welding, Park City, Utah, USA, 14-16 May 2003.
[20] Talwar, R., Lederich, R., Bolser, D. ve Garcia, A., (2003)“An innovative, low cost, friction stir welded cargo handling solution for the C-217 globemaster III for reducing manufacturing cost and logistics support,” 4th International Symposium on Friction Stir Welding, Park City, Utah, USA, 14-16 May 2003.
[21] Eclipse Aviation main page,. (2007) http://www.eclipseaviation.com/eclipse_500/gallery/images.html, Temmuz 2007.
[22] Rhodes, C.G., Mahoney, M.W., Bingel, W.H., Spurling, R.A. ve Bampton, C.C., (1997) “Effects of friction stir welding on microstructure of 7075 aluminium,” Scripta Materialia, 36, No:1, 69-751.
[23] Liu, G., Murr, L.E., Niou, C.S., McClure, J.C. ve Vega, F.R., (1997) “Microstructural aspects of the friction-stir welding of 6061-T6 aluminium,” Scripta Materialia, 37, No: 3, 355-361.
[24] Liu, H.J., et al., (2003) “Tensile properties and fracture locations of friction-stir welded joints of 2017-T351 aluminium alloy,” Journal of Materials Processing Technology, 142, No: 3, 692-696.
[25] Dubourg, L. ve Dacheucx, P., (2006) “Design and properties of FSW tools: a literature review,” Saint-Sauveur, Nr Montreal, Canada, 10-13 October 2006.
[26] Thomas, W.M., Johnson, K.I. ve Wiesner, C.S., (2003) “Friction stir welding-recent developments in tool and process technologies,” Advanced Engineering Materials, 5, No: 7, 485-490.
[27] Schmidt, H.N.B., Dickerson, T.L. ve Hattel, J.H., (2006) “Material flow in butt friction stir welds in AA2024-T3,” Acta Materialia, 54, 1199-1209.
[28] Schneider, J.A. ve Nunes, Jr. A.C., (2004) “Characterization of plastic flow and resulting microtextures in a friction stir weld,” Metallurgical and Materials Transactions B, 35B, 777-783.
[29] Heurtier, P., Desrayaud, C. ve Montheillet, F., (2002) "Materials Science Forum", 396-402, 1537-1542.
[30] Heurtier, P., Jones, M.J., Desrayaud, C., Driver, J.H., Montheillet, F. ve Allehaux, D., (2006) "Journal of Materials Processing Technology", 171, 348-357.
[31] Elangovan, K. ve Balasubramanian, V., (2007) “Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy,” Materials and Design, In Press, Corrected Proof.
[32] Burford, D.A., Tweedy, B.M. ve Widener, C.A., 2006 “Influence of shoulder configuration and geometric features on FSW track properties,” 6th International Symposium on Friction Stir Welding, Saint-Sauveur, Nr Montréal, Canada, October 10-13.
[33] Hatsukade, Y., Takahashi, T., Yasui, T., Tsubaki, M., Fukumono, M. ve Tanaka,. S., (2007) “Study on non-destructive inspection using HTS-SQUID for friction stir welding between dissimilar metals,” Physica C: Superconductivity.
[34] Leal,R.M. ve Loureiro, A., (2007) “Effect of overlapping friction stir welding passes in the quality of welds of aluminium alloys,” Materials & Design.
[35] Zhou, C., Xinqi Y. ve Luan G., (2006) “Effect of root flaws on the fatigue property of friction stir welds in 2024-T3 aluminium alloys,” Materials Science and Engineering A, 418, 155-160.
[36] Dickerson, T.L. ve Przydatek, J., (2003) “Fatigue of friction stir welds in aluminium alloys that contain root flaws,” International Journal of Fatigue.
[37] Rosado, L.S., Santos, T.G., Piedade, M., Ramos, P.M. ve Vilaça, P., (2010) “Advanced technique for non-destructive testing of friction stir welding of metals,” Measurement, 43, 1021-1030.
[38] Suresh, S., (1991) "Fatigue of materials", Cambridge University Press, New York, USA.
[39] Kinikoğlu, N.G., (2001) Malzeme Bilimi ve Mühendisliği, İstanbul, Literatür Yayınları, 290-294, Ekim 2001.
[40] Tetik, D., (1999) "2024-T3 Alüminyum alaşımının simüle edilmiş uçuş yükleri altında yorulma davranışı", Doktora Tezi, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, Türkiye.
[41] Schijve, J., (1998) "Fatigue crack growth under variable amplitude loading", Metals Handbook Volume 19, Fatigue and Fracture, (Ed: ASM Handbook Committee), American Society for Metals, USA, 110-131.
[42] Antolovich, S. D. ve Saxena, A., (1986) Fatigue failures, Metals Handbook; 9th edition Volume 11: Failure analysis and prevention, (Ed: ASM Handbook Committee), American Society for Metals, Ohio, USA, 102-135.
[43] Pascoe, K. J., (1978) "An introduction to the properties of engineering materials", ELBS, UK.
[44] Ellyin, F., (1997) "Fatigue damage, crack growth and life prediction", Chapman & Hall, London.
[45] Dieter, G. E., (1998) "Mechanical metallurgy", McGraw-Hill Book Co., London.
[46] Banantine, J. A. ve Comer, J. J., (1990) "Fundamentals of metal fatigue analysis", Prentice-Hall Inc., USA.
[47] Elangovan, K. ve V. Balasubramanian, (2008) “Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminium alloy joints,” Materials Characterization, 59, No: 9: 1168-1177.
[48] Mishra, R.S. ve Mahoney, M.W., (2007) "A Friction Stir Welding and Processing", SM International.
[49] Jata, K., Mahoney, M.W., Mishra, R.S. ve Lienert, T.J., (2005) "Friction stir welding and processing III", TMS publication.
[50] Prater, T., (2009) "Friction stir welding of metal matrix composites: the joining of AL 6061/SiC/17.5p using diamond coated tools", VDM.
[51] Fersini, D. ve A. Pirondi, (2008) “Analysis and modelling of fatigue failure of friction stir welded aluminium alloy single-lap joint,” Engineering Fracture Mechanics, 75, No: 3-4, 790-803.
[52] Ali, A., An, X., Rodopoulos, C.A., Brown, M.W., O’Hara, P., Levers, A. ve Gardiner, S, (2007) “The effect of controlled shot peening on the fatigue behaviour of 2024-T3 aluminium friction stir welds,” International Journal of Fatigue, 29, 1531-1545.
[53] Nielsen, K.L., (2008) “Ductile damage development in friction stir welded aluminium (AA2024) joints,” Engineering Fracture Mechanics, 75, 2795-2811.
[54] Braun, R., Biallas, G. Donne, C.D. ve Staniek, G., (2000) “Characterisation of mechanical properties and corrosion performance of friction stir welded AA6013 sheet,” Materials for Transportation Industry EUROMAT’99, 1, (Ed: Winkler, P. ) 150-155.
[55] Moreira, P.M.G.P, de Jesus, A.M.P., Riberio, A.S. ve de Castro, P.M.S.T., (2008) “Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium allays: a comparison,” Theoretical and Applied Fracture Mechanics, 50, 81-91.
[56] Hatamleh, O., (2009) “A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA2195 joints,” International Journal of Fatigue, 31, 974-988.
[57] Rodrigues, D.M., Loureiro, A., Leitao, C., Leal, R.M., Chaparro, B.M. ve Vilaça, P., (2008) “Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds,” Materials and Design.
[58] Tesch, A., Pippan, R., Trautmann, K.H. ve Döker, H., (2007) “Short cracks initiated in Al6013-T6 with the focused ion beam (FIB)-technology,” International Journal of Fatigue, 29, 1803-1811.
[59] Derry, C.G. ve Robson, J.D., (2008) “Characterization and modelling of toughness in 6013-T6 aerospace aluminium alloy friction stir welds,” Materials Science and Engineering, A490, 328-334.
[60] Heinz, B. ve Skrotzki, B., (2002) “Characterization of a friction-stir-welded aluminium alloy 6013,” Metallurgical and Materials Transactions B, 33B, 489-498.
[61] Troeger, L.P. ve Starke, Jr. E.A., (2000) “Microstructural and mechanical characterization of a superplastic 6xxx aluminium alloy,” Materials Science and Engineering, A277, 102-113.
[62] Uzun, H., Donne, C.D., Argagnotto, A., Ghidini T. ve Gambaro, C., (2005) “Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel,” Materials and Design, 26, 41-46.
[63] Heinz, A., Haszler, A., Keidel, C., Moldenhauer, Benedictus, R. ve Miller, W.S., (2000) “Recent development in an aluminium alloys for aerospace applications,” Materials Science and Engineering, A280, 102-107.
[64] John, R., Jata, K.V. ve Sadananda, K., (2003) “Residual stress effect on near-threshold fatigue crack growth in friction stir welds in aerospace alloys,” International Journal of Fatigue, 25, 939-948.
[65] Hassan, Kh.,A.A., Norman, A.F., Price, D.A. ve Prangnell, P.B., (2003) “Stability of nugget zone grain structures in high strength Al-alloy friction stir welds during solution treatment,” Acta Materials, 51, 1923-1936.
[66] Braun, R., (2006) “Investigations on the long-term stability of 6013-T6 sheet,” Materials Characterization, 56, 85-95.
[67] Buha, J., Lumley, R.N. ve Crosky, A.G., (2006) “Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy,” Metallurgical and Materials Transactions A, 37A, 3119-3130.
[68] Carbonini, P., Monetta, T., Mitton, D.B., Belluci, F., Mastronardi, P. ve Scatteia, B. (1997) “Degradation behaviour of 6013-T6, 2024-T3 alloys and pure aluminium in different aqueous media,” Journal of Applied Electrochemistry, 27, 1135-1142.
[69] Braun, R., Donne, C.D. ve Staniek, G., (2000) “Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet,” Mat.-wiss u. Werkstofftech, 31, 1017-1026.
[70] Kafalı, H., (2009) "AA 2024 Al alaşımının sürtünme karıştırma kaynağında (SKK) kaynak parametrelerinin birleşmeye etkilerinin incelenmesi", Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
[71] Hatamleh, O., (2006) Effects of laser and shot peening on friction stir welding, PhD. Thesis, University of South Carolina.
Published
2014-07-28
How to Cite
[1]
H. Kafalı and N. Ay, “AN INVESTIGATION OF MICROSTRUCTURAL AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED AL 6013-T6 ALLOY USED ON AERONAUTICS AND AEROSPACE STRUCTURES”, JAST, vol. 7, no. 2, pp. 85-101, Jul. 2014.
Section
Articles